Manufacturing and characterization of 3-d hydroxyapatite bone tissue engineering scaffolds.

نویسندگان

  • T-M G Chu
  • S J Hollister
  • J W Halloran
  • S E Feinberg
  • D G Orton
چکیده

Internal architecture has a direct impact on the mechanical and biological behaviors of porous hydroxyapatite (HA) implants. However, traditional processing methods provide very minimal control in this regard. This paper reviews a novel processing technique developed in our laboratory for fabricating scaffolds with controlled internal architectures. The preliminary mechanical property and in vivo evaluation of these scaffolds are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering

In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...

متن کامل

Fabrication and Characterization of Polycaprolactone – Zeolite Y Nanocomposite for Bone Tissue Engineering

In recent years, nanoceramics have been used in scaffolds to emulate the nanocomposite with a three-dimensional structure of natural bone tissue. In this regard, polycaprolactone biopolymer is widely used as a scaffold in bone tissue engineering. The goal of this research is to produce porous scaffolds of polycaprolactone - zeolite biocomposite with suitable mechanical, bioactive and biological...

متن کامل

Hydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications

Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...

متن کامل

Improving the mechanical and bioactivity of hydroxyapatite porous scaffold ceramic with diopside/forstrite ceramic coating

Objective(s): Scaffolds are considered as biological substitutes in bone defects which improve and accelerate the healing process of surrounding tissue. In recent years a major challenge in biomaterials is to produce porous materials with properties similar to bone tissue. In this study, the natural bioactive hydroxyapatite scaffolds with nano Diopside /Forstrite coating was successfully synthe...

متن کامل

Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering

Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the New York Academy of Sciences

دوره 961  شماره 

صفحات  -

تاریخ انتشار 2002